首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25309篇
  免费   2703篇
  国内免费   2164篇
化学   15001篇
晶体学   586篇
力学   989篇
综合类   104篇
数学   835篇
物理学   12661篇
  2024年   54篇
  2023年   232篇
  2022年   384篇
  2021年   556篇
  2020年   784篇
  2019年   723篇
  2018年   732篇
  2017年   888篇
  2016年   1204篇
  2015年   1061篇
  2014年   1329篇
  2013年   2301篇
  2012年   2011篇
  2011年   2238篇
  2010年   1666篇
  2009年   1918篇
  2008年   1664篇
  2007年   1763篇
  2006年   1370篇
  2005年   1085篇
  2004年   1017篇
  2003年   833篇
  2002年   943篇
  2001年   537篇
  2000年   428篇
  1999年   348篇
  1998年   343篇
  1997年   218篇
  1996年   204篇
  1995年   198篇
  1994年   185篇
  1993年   131篇
  1992年   140篇
  1991年   77篇
  1990年   77篇
  1989年   59篇
  1988年   70篇
  1987年   53篇
  1986年   53篇
  1985年   45篇
  1984年   48篇
  1983年   20篇
  1982年   40篇
  1981年   29篇
  1980年   18篇
  1979年   30篇
  1978年   14篇
  1977年   11篇
  1974年   10篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
The practical application of advanced personalized electronics is inseparable from flexible, durable, and even self-healable energy storage devices. However, the mechanical and self-healing performance of supercapacitors is still limited at present. Herein, highly transparent, stretchable, and self-healable poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA)/poly(vinyl alcohol) (PVA)/LiCl polyelectrolytes were facilely prepared by one-step radical polymerization. The cooperation of PAMPSA and PVA significantly increased the mechanical and self-healing capacity of the polyelectrolyte, which exhibited superior stretchability of 938 %, stress of 112.68 kPa, good electrical performance (ionic conductivity up to 20.6 mS cm−1), and high healing efficiency of 92.68 % after 24 h. After assembly with polypyrrole-coated single-walled carbon nanotubes, the resulting as-prepared supercapacitor had excellent electrochemical properties with high areal capacitance of 297 mF cm−2 at 0.5 mA cm−2 and good rate capability (218 mF cm−2 at 5 mA cm−2). Besides, after cutting in two the supercapacitor recovered 99.2 % of its original specific capacitance after healing for 24 h at room temperature. The results also showed negligible change in the interior contact resistance of the supercapacitor after ten cutting/healing cycles. The present work provides a possible solution for the development of smart and durable energy storage devices with low cost for next-generation intelligent electronics.  相似文献   
52.
The effects of bamboo flour (BF) content on the dynamic rheological properties of BF-filled HDPE composites were investigated. Our findings showed that the addition of BF caused an enhancement of the non-Newtonianism of wood-plastic composites (WPCs) melt as well as the appearance of some new relaxation processes. In addition, the viscosity and modulus of the BF-filled HDPE composites showed a remarkable increase at 170?°C and 190?°C when the BF content exceeded 30%, which could be associated with the solid-like property of the WPCs at high BF loading, we propose. The present study we suggest will be useful to the formula design as well as the optimization of processing parameters for WPCs in general.  相似文献   
53.
54.
Eight-coordinated DyIII centres with D6h symmetry are expected to act as high-performance single-molecule magnets (SMMs) due to the simultaneous fulfilment of magnetic axiality and a high coordination number (a requisite for air stability). But the experimental realization is challenging due to the requirement of six coordinating atoms in the equatorial plane of the hexagonal bipyramid; this is usually too crowded for the central DyIII ion. Here a hexaaza macrocyclic Schiff base ligand and finetuned axial alkoxide/phenol-type ligands are used to show that a family of hexagonal bipyramidal DyIII complexes can be isolated. Among them, three complexes possess nearly perfect D6h local symmetry. The highest effective magnetic reversal barrier is found at 1338(3) K and an open hysteresis temperature of 6 K at the field sweeping rate of 1.2 mT s−1; this represents a new record for D6h SMMs.  相似文献   
55.
Organic spin-based molecular materials are considered to be attractive for the generation of functional materials with emergent optoelectronic, magnetic, or magneto-conductive properties. However, the major limitations to the utilization of organic spin-based systems are their high reactivity, instability, and propensity for dimerization. Herein, we report the synthesis, characterization, and magnetic and electronic studies of three ambient stable radical ions ( 1 a.+ , 1 b.+ , and 1 c.+ ). The radical ions 1 b.+ and 1 c.+ with BPh4 and BF4 counter anions, respectively, were synthesized in excellent yields by means of anion metathesis of 1 a.+ with Br as its counter anion. Notably, synthesis of 1 a.+ was achieved in an ecofriendly, solvent-free protocol. The radical ions were characterized by means of single-crystal X-ray diffraction studies, which revealed the discrete nature of the radical ions and extensive hydrogen-bonding interactions within the radical ions and with the counter anions. Thus, radical ions can be organized to form infinite supramolecular arrays using weak noncovalent interactions. In addition, the Br, BF4, and BPh4 anions formed diverse types of anion–π interactions with the naphthalene and imide rings of the radical ions. The radical ions were characterized by means of X-band electron paramagnetic resonance (EPR) spectroscopy in solution and in the solid state. Magnetic studies revealed their paramagnetic nature in the range of 10 to 300 K. The radical ions exhibited high resistivity approaching the gigaohm (GΩ) scale. In addition, the radical ions exhibited panchromism.  相似文献   
56.
By using the density functional theory (DFT) and Monte Carlo simulations (MCS) with the Heisenberg model, we have studied magnetic properties of the bulk perovskite YCrO3. The exchange couplings of the Heisenberg model and the magnetic anisotropy are investigated. The 110 direction in the crystalline structure of the compound has shown the minimum energy, it is the easy magnetic direction. Using Monte Carlo simulations, the magnetizations behavior, the effects of system parameters and the critical exponents of the compound YCrO3 are implemented. It is shown that the bulk perovskite YCrO3 belongs to the 3D Heisenberg universality class.  相似文献   
57.
58.
Luca Cimbaro 《哲学杂志》2019,99(12):1499-1514
A unified theory captures both brittle and ductile fracture. The fracture toughness is proportional to the applied stress squared and the length of the crack. For purely brittle solids, this criterion is equivalent to Griffith's theory. In other cases, it provides a theoretical basis for the Irwin-Orowan formula. For purely ductile solids, the theory makes direct contact with the Bilby-Cottrell-Swinden model. The toughness is highest in ductile materials because the shielding dislocations in the plastic zone provide additional resistance to crack growth. This resistance is the force opposing dislocation motion, and the Peach-Koehler force overcomes it. A dislocation-free zone separates the plastic zone from and the tip of the crack. The dislocation-free zone is finite because molecular forces responsible for the cohesion of the surfaces near the crack tip are not negligible. At the point of crack growth, the length of the dislocation-free zone is constant and the shielding dislocations advance in concert. As in Griffith's theory, the crack is in unstable equilibrium. The theory shows that a dimensionless variable controls the elastoplastic behaviour. A relationship for the size of the dislocation-free zone is derived in terms of the macroscopic and microscopic parameters that govern the fracture.  相似文献   
59.
Shi Shu  Lu Yang 《哲学杂志》2020,100(12):1550-1568
ABSTRACT

The iridium is an important metal which has excellent resistance to corrosion at high temperature. L12 intermetallic compounds i.e. Ir3Nb and Ir3Zr, with similar lattice parameters are ideal for working at high temperature. They are fully soluble due to their low lattice misfit. A first-principle investigation into the effect of doping Zr with different concentrations on the electronic structure, mechanical and thermodynamic properties of NbIr3 has been studied to prompt the development of novel high-temperature materials. Nine ZrxNb8?xIr24 compounds are carefully considered. The results show that adding Zr into these compounds can strengthen their structural stability and ductility. Nevertheless, it reduces the elastic modulus and elastic stiffness. Simultaneously, with the increase of Zr content, the thermodynamic properties of these compounds decrease. It is also found that the changes of elastic modulus are mainly attributed to the variations of bonds in these compounds.  相似文献   
60.
A detailed investigation about the effect of Sc2O3: 1 mol%Ho3+/5 mol%Yb3+ co-doped with Ce4+ ions prepared by sol-gel methods was performed systematically. Under the excitation of 980 nm laser diode, both green emission (553 nm, 5F4/5S25I8) and red emission (672 nm, 5F55I8) were both observed in the emission spectra of the samples, which were found to be two-photon process and sensitized by Yb3+ ions. With the increasing of Ce4+ ions, the up-conversion green emission intensity are increased by 6.52, 8.69, 10.85, 13.92 and 16.66 fold, corresponding to the Ce4+ ions concentrations from 5 mol% to 13 mol%, respectively. The number of photons are necessary to populate the upper emitting state decreases to 2 and the infrared absorption coefficient is reduced, when the Ce4+ ions concentration increase to 13 mol%. Ce4+ ions play an important role in tailoring the local crystal field around Ho3+ ions, lowering the highest phonon cut-off energy of matrix and reducing the infrared absorption coefficient, thus hindering the non-radiative processes, which contribute to the increased emission intensity. The excellent enhancement makes it a promising multifunctional optical luminescence material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号